Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 569
Filtrar
1.
J Med Microbiol ; 73(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38668646

RESUMO

Background. Actinobacillus pleuropneumoniae, a member of the Pasteurellaceae family, is known for its highly infectious nature and is the primary causative agent of infectious pleuropneumonia in pigs. This disease poses a considerable threat to the global pig industry and leads to substantial economic losses due to reduced productivity, increased mortality rates, and the need for extensive veterinary care and treatment. Due to the emergence of multi-drug-resistant strains, Chinese herbal medicine is considered one of the best alternatives to antibiotics due to its unique mechanism of action and other properties. As a type of Chinese herbal medicine, Rhein has the advantages of a wide antibacterial spectrum and is less likely to develop drug resistance, which can perfectly solve the limitations of current antibacterial treatments.Methods. The killing effect of Rhein on A. pleuropneumoniae was detected by fluorescence quantification of differential expression changes of key genes, and scanning electron microscopy was used to observe the changes in A. pleuropneumoniae status after Rhein treatment. Establishing a mouse model to observe the treatment of Rhein after A. pleuropneumoniae infection.Results. Here, in this study, we found that Rhein had a good killing effect on A. pleuropneumoniae and that the MIC was 25 µg ml-1. After 3 h of action, Rhein (4×MIC) completely kills A. pleuropneumoniae and Rhein has good stability. In addition, the treatment with Rhein (1×MIC) significantly reduced the formation of bacterial biofilms. Therapeutic evaluation in a murine model showed that Rhein protects mice from A. pleuropneumoniae and relieves lung inflammation. Quantitative RT-PCR (Quantitative reverse transcription polymerase chain reaction is a molecular biology technique that combines both reverse transcription and polymerase chain reaction methods to quantitatively detect the amount of a specific RNA molecule) results showed that Rhein treatment significantly downregulated the expression of the IL-18 (Interleukin refers to a class of cytokines produced by white blood cells), TNF-α, p65 and p38 genes. Along with the downregulation of genes such as IL-18, it means that Rhein has an inhibitory effect on the expression of these genes, thereby reducing the activation of inflammatory cells and the production of inflammatory mediators. This helps reduce inflammation and protects tissue from further damage.Conclusions. This study reports the activity of Rhein against A. pleuropneumoniae and its mechanism, and reveals the ability of Rhein to treat A. pleuropneumoniae infection in mice, laying the foundation for the development of new drugs for bacterial infections.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Antraquinonas , Antibacterianos , Animais , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Actinobacillus pleuropneumoniae/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Camundongos , Infecções por Actinobacillus/tratamento farmacológico , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Suínos , Modelos Animais de Doenças , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Pulmão/microbiologia , Pulmão/patologia , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia
2.
Vet Res ; 55(1): 48, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594744

RESUMO

Actinobacillus pleuropneumoniae (APP) is a bacterium frequently associated with porcine pleuropneumonia. The acute form of the disease is highly contagious and often fatal, resulting in significant economic losses for pig farmers. Serotype diversity and antimicrobial resistance (AMR) of APP strains circulating in north Italian farms from 2015 to 2022 were evaluated retrospectively to investigate APP epidemiology in the area. A total of 572 strains isolated from outbreaks occurring in 337 different swine farms were analysed. The majority of isolates belonged to serotypes 9/11 (39.2%) and 2 (28.1%) and serotype diversity increased during the study period, up to nine different serotypes isolated in 2022. The most common resistances were against tetracycline (53% of isolates) and ampicillin (33%), followed by enrofloxacin, florfenicol and trimethoprim/sulfamethoxazole (23% each). Multidrug resistance (MDR) was common, with a third of isolates showing resistance to more than three antimicrobial classes. Resistance to the different classes and MDR varied significantly depending on the serotype. In particular, the widespread serotype 9/11 was strongly associated with florfenicol and enrofloxacin resistance and showed the highest proportion of MDR isolates. Serotype 5, although less common, showed instead a concerning proportion of trimethoprim/sulfamethoxazole resistance. Our results highlight how the typing of circulating serotypes and the analysis of their antimicrobial susceptibility profile are crucial to effectively manage APP infection and improve antimicrobial stewardship.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Doenças dos Suínos , Tianfenicol/análogos & derivados , Suínos , Animais , Sorogrupo , Testes de Sensibilidade Microbiana/veterinária , Enrofloxacina , Fazendas , Estudos Retrospectivos , Pleuropneumonia/epidemiologia , Pleuropneumonia/veterinária , Pleuropneumonia/microbiologia , Antibacterianos/farmacologia , Sulfametoxazol/farmacologia , Trimetoprima/farmacologia , Itália/epidemiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/epidemiologia , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Sorotipagem/veterinária
3.
Vet Microbiol ; 290: 110006, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308931

RESUMO

Porcine infectious pleuropneumonia (PCP) is a severe disease of porcine caused by Actinobacillus pleuropneumoniae (APP). The spread of PCP remains a threat to the porcine farms and has been known to cause severe economic losses. The cAMP receptor protein (CRP) serves as a pivotal player in helping bacteria adapt to shifts in their environment, particularly when facing the challenges posed by bacterial infections. In this study, we investigated the role of CRP in APP. Our results revealed that crp mutant (Δcrp) strains were more sensitive to acidic and osmotic stress resistance and had lower biofilm formation ability than wild-type (WT) strains. Furthermore, the Δcrp strains showed deficiencies in anti-phagocytosis, adhesion, and invasion upon interaction with host cells. Mice infected with the Δcrp strains demonstrated reduced bacterial loads in their lungs compared to those infected with the WT strains. This study reveals the pivotal role of crp gene expression in regulating pleuropneumonia growth, stress resistance, iron utilization, biofilm formation, phagocytosis, adhesion, invasion and colonization. Our discoveries offer novel perspectives on understanding the development and progression of APP infections.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Doenças dos Roedores , Doenças dos Suínos , Animais , Suínos , Camundongos , Pleuropneumonia/microbiologia , Pleuropneumonia/veterinária , Biofilmes , Actinobacillus pleuropneumoniae/metabolismo , Proteína Receptora de AMP Cíclico/genética , Pulmão/microbiologia , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Doenças dos Suínos/microbiologia
4.
Medicine (Baltimore) ; 102(46): e36087, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37986302

RESUMO

RATIONALE: Actinobacillus ureae (A. ureae) is an unusual commensal of human respiratory flora, rarely causing human infection. The predisposing factors, identification, clinical features, and antibiotic therapy of A. ureae are seldomly reported. Herein, we present a case of 64-year-old man affected by A. ureae pneumonia after intracranial surgery. PATIENT CONCERNS AND DIAGNOSES: A 64-year-old male was admitted with vomiting, drowsiness, and a severe disturbance of consciousness and was later diagnosed with cerebral hemorrhage by computed tomography images. After a craniocerebral surgery, the patient suffered from intractable pneumonia, experiencing treatment failure with multiple anti-bacterial agents. Sputum culture yield pure colonies of A. ureae, confirmed by matrix-assisted laser desorption/ionization time of flight and 16S rRNA gene sequencing. INTERVENTIONS: Minocycline (100 mg p.o. per 12 hours) with a course of 15 days was administrated for this patient. OUTCOMES: The respiratory symptoms, presenting as intermittent coughing with purulent and yellowish sputum, were gone. A 3-month follow-up examination showed a complete resolution of radiological findings. LESSONS: Clinically, the actual incidence of A. ureae pneumonia may be higher than that we generally recognized, and clinicians should consider A. ureae as a possible etiologic agent in patients with predispositions. Currently, A. ureae may be susceptible to penicillin, ampicillin, and third-generation cephalosporins. Other antibacterial agents, such as tetracycline, amoxicillin/clavulanic acid, and aminoglycosides also respond well and can be a choice in the treatment of A. ureae infections.


Assuntos
Infecções por Actinobacillus , Actinobacillus , Pneumonia , Masculino , Humanos , Pessoa de Meia-Idade , RNA Ribossômico 16S , Infecções por Actinobacillus/diagnóstico , Infecções por Actinobacillus/tratamento farmacológico , Infecções por Actinobacillus/microbiologia , Antibacterianos/uso terapêutico , Pneumonia/complicações
5.
J Vet Med Sci ; 85(10): 1131-1135, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37612056

RESUMO

Five pigs experimentally infected with Actinobacillus pleuropneumoniae serovar 15 isolated in our previous study were pathologically examined. One pig died at 2 days post inoculation (dpi) and four pigs were euthanized at 7 dpi. Autopsy revealed fibrinohemorrhagic pleuropneumonia in all pigs. Histopathologically, the lesions were characterized by extensive hemorrhage and necrosis, fibrin deposition, and multifocal abscesses composed of numerous neutrophils including oat cells and numerous Gram-negative bacilli. In one survived pig, asteroid body formation was confirmed in the lung. The bacteria within the abscesses and asteroid bodies were immunohistochemically positive for antiserum raised against A. pleuropneumoniae serovar 15. This is the first report describing porcine pleuropneumonia with asteroid bodies in a pig experimentally infected with A. pleuropneumoniae serovar 15.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Mycoplasma , Pleuropneumonia , Doenças dos Suínos , Suínos , Animais , Pleuropneumonia/microbiologia , Pleuropneumonia/veterinária , Sorogrupo , Abscesso/patologia , Abscesso/veterinária , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Doenças dos Suínos/microbiologia , Pulmão/patologia
6.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511601

RESUMO

Actinobacillus pleuropneumoniae (APP) is the causative pathogen of porcine pleuropneumonia, a highly contagious respiratory disease in the pig industry. The increasingly severe antimicrobial resistance in APP urgently requires novel antibacterial alternatives for the treatment of APP infection. In this study, we investigated the effect of tea polyphenols (TP) against APP. MIC and MBC of TP showed significant inhibitory effects on bacteria growth and caused cellular damage to APP. Furthermore, TP decreased adherent activity of APP to the newborn pig tracheal epithelial cells (NPTr) and the destruction of the tight adherence junction proteins ß-catenin and occludin. Moreover, TP improved the survival rate of APP infected mice but also attenuated the release of the inflammation-related cytokines IL-6, IL-8, and TNF-α. TP inhibited activation of the TLR/MAPK/PKC-MLCK signaling for down-regulated TLR-2, TLR4, p-JNK, p-p38, p-PKC-α, and MLCK in cells triggered by APP. Collectively, our data suggest that TP represents a promising therapeutic agent in the treatment of APP infection.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Actinobacillus , Infecções por Mycoplasma , Pleuropneumonia , Doenças dos Suínos , Animais , Suínos , Camundongos , Pleuropneumonia/microbiologia , Receptor 4 Toll-Like/metabolismo , Junções Íntimas , Pulmão/microbiologia , Infecções por Actinobacillus/tratamento farmacológico , Infecções por Actinobacillus/microbiologia , Chá/metabolismo , Doenças dos Suínos/microbiologia
7.
Vet Res ; 54(1): 62, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37475032

RESUMO

Actinobacillus pleuropneumoniae (APP) is a gram-negative pathogenic bacterium responsible for porcine contagious pleuropneumonia (PCP), which can cause porcine necrotizing and hemorrhagic pleuropneumonia. Actinobacillus pleuropneumoniae-RTX-toxin (Apx) is an APP virulence factor. APP secretes a total of four Apx toxins, among which, ApxI demonstrates strong hemolytic activity and cytotoxicity, causing lysis of porcine erythrocytes and apoptosis of porcine alveolar macrophages. However, the protein interaction network between this toxin and host cells is still poorly understood. TurboID mediates the biotinylation of endogenous proteins, thereby targeting specific proteins and local proteomes through gene fusion. We applied the TurboID enzyme-catalyzed proximity tagging method to identify and study host proteins in immortalized porcine alveolar macrophage (iPAM) cells that interact with the exotoxin ApxI of APP. His-tagged TurboID-ApxIA and TurboID recombinant proteins were expressed and purified. By mass spectrometry, 318 unique interacting proteins were identified in the TurboID ApxIA-treated group. Among them, only one membrane protein, caveolin-1 (CAV1), was identified. A co-immunoprecipitation assay confirmed that CAV1 can interact with ApxIA. In addition, overexpression and RNA interference experiments revealed that CAV1 was involved in ApxI toxin-induced apoptosis of iPAM cells. This study provided first-hand information about the proteome of iPAM cells interacting with the ApxI toxin of APP through the TurboID proximity labeling system, and identified a new host membrane protein involved in this interaction. These results lay a theoretical foundation for the clinical treatment of PCP.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Doenças dos Suínos , Suínos , Animais , Actinobacillus pleuropneumoniae/genética , Macrófagos Alveolares/metabolismo , Exotoxinas/farmacologia , Apoptose , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/genética , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Proteínas Hemolisinas/toxicidade , Doenças dos Suínos/microbiologia
8.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37279906

RESUMO

Actinobacillus seminis is the causal agent of epididymitis and has other effects on the reproductive tracts of small ruminants and bovines. This bacterium causes infection when luteinizing (LH) or follicle-stimulating hormones increase, and hosts reach sexual maturity. LH induces female ovulation and male testosterone production, suggesting that these hormones affect A. seminis pathogenicity. In the present study, we evaluated the effect of testosterone (1-5 ng/ml) or estradiol (5-25 pg/ml) added to culture medium on the in vitro growth, biofilm production, and adhesin expression of A. seminis. Estradiol does not promote the growth of this bacterium, whereas testosterone increased A. seminis planktonic growth 2-fold. Both hormones induced the expression of the elongation factor thermo unstable (EF-Tu) and phosphoglycerate mutase (PGM), proteins that A. seminis uses as adhesins. Estradiol (5 or 10 pg/ml) decreased biofilm formation by 32%, whereas testosterone, even at 5 ng/ml, showed no effect. Both hormones modified the concentrations of carbohydrates and eDNA in biofilms by 50%. Amyloid proteins are characterized by their capacity to bind Congo red (CR) dye. Actinobacillus seminis binds CR dye, and this binding increases in the presence of 5-20 pg/ml estradiol or 4 ng/ml testosterone. The A. seminis EF-Tu protein was identified as amyloid-like protein (ALP). The effect of sexual hormones on the growth and expression of virulence factors of A. seminis seems to be relevant for its colonization and permanence in the host.


Assuntos
Infecções por Actinobacillus , Actinobacillus seminis , Feminino , Masculino , Animais , Bovinos , Actinobacillus seminis/genética , Estradiol/farmacologia , Infecções por Actinobacillus/microbiologia , Testosterona/farmacologia , Fator Tu de Elongação de Peptídeos , Adesinas Bacterianas/genética , Biofilmes
9.
Vet Res ; 54(1): 42, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237397

RESUMO

Actinobacillus pleuropneumoniae is an important swine respiratory pathogen. Previous studies have suggested that growth as a biofilm is a natural state of A. pleuropneumoniae infection. To understand the survival features involved in the biofilm state, the growth features, morphology and gene expression profiles of planktonic and biofilm A. pleuropneumoniae were compared. A. pleuropneumoniae in biofilms showed reduced viability but maintained the presence of extracellular polymeric substances (EPS) after late log-phase. Under the microscope, bacteria in biofilms formed dense aggregated structures that were connected by abundant EPS, with reduced condensed chromatin. By construction of Δpga and ΔdspB mutants, polymeric ß-1,6-linked N-acetylglucosamine and dispersin B were confirmed to be critical for normal biofilm formation. RNA-seq analysis indicated that, compared to their planktonic counterparts, A. pleuropneumoniae in biofilms had an extensively altered transcriptome. Carbohydrate metabolism, energy metabolism and translation were significantly repressed, while fermentation and genes contributing to EPS synthesis and translocation were up-regulated. The regulators Fnr (HlyX) and Fis were found to be up-regulated and their binding motifs were identified in the majority of the differentially expressed genes, suggesting their coordinated global role in regulating biofilm metabolism. By comparing the transcriptome of wild-type biofilm and Δpga, the utilization of oligosaccharides, iron and sulfur and fermentation were found to be important in adhesion and aggregation during biofilm formation. Additionally, when used as inocula, biofilm bacteria showed reduced virulence in mouse, compared with planktonic grown cells. Thus, these results have identified new facets of A. pleuropneumoniae biofilm maintenance and regulation.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Doenças dos Suínos , Animais , Suínos , Camundongos , Actinobacillus pleuropneumoniae/genética , Biofilmes , Transcriptoma , Virulência , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Doenças dos Suínos/microbiologia
10.
Microbiol Spectr ; 10(5): e0181922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040198

RESUMO

Outer membrane vesicles (OMVs) are spontaneously released by Gram-negative bacteria, including Actinobacillus pleuropneumoniae, which causes contagious pleuropneumonia in pigs and leads to considerable economic losses in the swine industry worldwide. A. pleuropneumoniae OMVs have previously been demonstrated to contain Apx toxins and proteases, as well as antigenic proteins. Nevertheless, comprehensive characterizations of their contents and interactions with host immune cells have not been made. Understanding the protein compositions and immunomodulating ability of A. pleuropneumoniae OMVs could help illuminate their biological functions and facilitate the development of OMV-based applications. In the current investigation, we comprehensively characterized the proteome of native A. pleuropneumoniae OMVs. Moreover, we qualitatively and quantitatively compared the OMV proteomes of a wild-type strain and three mutant strains, in which relevant genes were disrupted to increase OMV production and/or produce OMVs devoid of superantigen PalA. Furthermore, the interaction between A. pleuropneumoniae OMVs and porcine alveolar macrophages was also characterized. Our results indicate that native OMVs spontaneously released by A. pleuropneumoniae MIDG2331 appeared to dampen the innate immune responses by porcine alveolar macrophages stimulated by either inactivated or live parent cells. The findings suggest that OMVs may play a role in manipulating the porcine defense during the initial phases of the A. pleuropneumoniae infection. IMPORTANCE Owing to their built-in adjuvanticity and antigenicity, bacterial outer membrane vesicles (OMVs) are gaining increasing attention as potential vaccines for both human and animal use. OMVs released by Actinobacillus pleuropneumoniae, an important respiratory pathogen in pigs, have also been investigated for vaccine development. Our previous studies have shown that A. pleuropneumoniae secretes OMVs containing multiple immunogenic proteins. However, immunization of pigs with these vesicles was not able to relieve the pig lung lesions induced by the challenge with A. pleuropneumoniae, implying the elusive roles that A. pleuropneumoniae OMVs play in host-pathogen interaction. Here, we showed that A. pleuropneumoniae secretes OMVs whose yield and protein content can be altered by the deletion of the nlpI and palA genes. Furthermore, we demonstrate that A. pleuropneumoniae OMVs dampen the immune responses in porcine alveolar macrophages stimulated by A. pleuropneumoniae cells, suggesting a novel mechanism that A. pleuropneumoniae might use to evade host defense.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Animais , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/genética , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas , Imunidade , Macrófagos Alveolares , Peptídeo Hidrolases , Pleuropneumonia/veterinária , Pleuropneumonia/microbiologia , Pleuropneumonia/prevenção & controle , Proteoma , Superantígenos , Suínos
11.
Front Cell Infect Microbiol ; 12: 898412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992166

RESUMO

Respiratory infections seriously affect the swine industry worldwide. Co-infections of two vital pathogenic bacteria Streptococcus suis (S. suis) and Actinobacillus pleuropneumoniae (A. pleuropneumoniae), colonizing the respiratory tract often occurs in veterinary clinical practice. Moreover, our previous research found that S. suis and A. pleuropneumoniae can form biofilm in vitro. The formation of a mixed biofilm not only causes persistent infections, but also increases the multiple drug resistance of bacteria, which brings difficulties to disease prevention and control. However, the methods for detecting S. suis and A. pleuropneumoniae in co-infection and biofilm are immature. Therefore, in this study, primers and probes were designed based on the conservative sequence of S. suis gdh gene and A. pleuropneumoniae apxIVA gene. Then, a TaqMan duplex real-time PCR method for simultaneous detection of S. suis and A. pleuropneumoniae was successfully established via optimizing the reaction system and conditions. The specificity analysis results showed that this TaqMan real-time PCR method had strong specificity and high reliability. The sensitivity test results showed that the minimum detection concentration of S. suis and A. pleuropneumoniae recombinant plasmid was 10 copies/µL, which is 100 times more sensitive than conventional PCR methods. The amplification efficiencies of S. suis and A. pleuropneumoniae were 95.9% and 104.4% with R2 value greater than 0.995, respectively. The slopes of the calibration curves of absolute cell abundance of S. suis and A. pleuropneumoniae were 1.02 and 1.09, respectively. The assays were applied to cultivated mixed biofilms and approximately 108 CFUs per biofilm were quantified when 108 CFUs planktonic bacteria of either S. suis or A. pleuropneumoniae were added to biofilms. In summary, this study developed a TaqMan real-time PCR assay for specific, accurate quantification of S. suis or A. pleuropneumoniae in mixed biofilms, which may help for the detection, prevention and control of diseases caused by a bacterial mixed infection involving S. suis and A. pleuropneumoniae.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Coinfecção , Streptococcus suis , Doenças dos Suínos , Infecções por Actinobacillus/diagnóstico , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/genética , Animais , Biofilmes , Coinfecção/diagnóstico , Coinfecção/veterinária , Reprodutibilidade dos Testes , Streptococcus suis/genética , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/microbiologia
12.
Microbiol Spectr ; 10(4): e0118522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35856711

RESUMO

Actinobacillus pleuropneumoniae (APP) is the causative agent of pleuropneumonia in pigs, one of the most relevant bacterial respiratory diseases in the swine industry. To date, 19 serotypes have been described based on capsular polysaccharide typing with significant virulence dissimilarities. In this study, 16 APP isolates from Spanish origin were selected to perform antimicrobial susceptibility tests and comparative genomic analysis using whole genome sequencing (WGS). To obtain a more comprehensive worldwide molecular epidemiologic analyses, all APP whole genome assemblies available at the National Center for Biotechnology Information (NCBI) at the time of the study were also included. An in-house in silico PCR approach enabled the correct serotyping of unserotyped or incorrectly serotyped isolates and allowed for the discrimination between serotypes 9 and 11. A pangenome analysis identified the presence or absence of gene clusters to be serotype specific, as well as virulence profile analyses targeting the apx operons. Antimicrobial resistance genes were correlated to the presence of specific plasmids. Altogether, this study provides new insights into the genetic variability within APP serotypes, correlates phenotypic tests with bioinformatic analyses and manifests the benefits of populated databases for a better assessment of diversity and variability of relatively unknown pathogens. Overall, genomic comparative analysis enhances the understanding of transmission and epidemiological patterns of this species and suggests vertical transmission of the pathogen, including the resistance genes, within the Spanish integrated systems. IMPORTANCE Pleuropneumonia is one of the most relevant respiratory infections in the swine industry. Despite Actinobacillus pleuropneumoniae (APP) being one of the most important pathogens in the pig production, this is the first comparative study including all available whole genome sequencing data from NCBI. Moreover, this study also includes 16 APP isolates of Spanish origin with known epidemiological relationships through vertical integrated systems. Genomic comparisons provided a deeper understanding of molecular and epidemiological knowledge between different APP serotypes. Furthermore, determination of resistance and toxin profiles allowed correlation with the presence of mobile genetic elements and specific serotype, respectively.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Doenças dos Suínos , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/genética , Animais , Genômica , Pleuropneumonia/microbiologia , Pleuropneumonia/veterinária , Sorotipagem , Suínos , Doenças dos Suínos/microbiologia , Sequenciamento Completo do Genoma
13.
Lett Appl Microbiol ; 75(2): 442-449, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35616177

RESUMO

Actinobacillus pleuropneumoniae is the primary aetiological agent of contagious porcine pleuropneumonia associated with serious economic impact on pig husbandry worldwide. Diagnosis of the disease by existing techniques including isolation and identification of bacteria followed by serotyping, serological techniques, conventional PCR, real-time PCR and LAMP assays are cumbersome, time-consuming, costly and not suitable for rapid field application. A novel isothermal polymerase chain reaction (PSR) technique is standardized for all the reagents, incubation time and incubation temperature against A. pleuropneumoniae. The sensitivity of the assay was determined against various dilutions of purified DNA and total bacterial count. The specificity of the assay was determined against 11 closely related bacterial isolates. The relative sensitivity and specificity were compared with bacterial isolation, conventional PCR and real-time PCR assays. The PSR assay for specific detection was standardized at 64°C for 30 min of incubation in a water bath. The result was visible by the naked eye after centrifugation of the reaction mixture or after incorporation of SYBR Green dye as yellowish-green fluorescence. The technique was found to be 100% specific and equally sensitive with real-time PCR and 10 times more sensitive than conventional PCR. The PSR assay could be applicable in the detection of the organisms in porcine nasal swabs spiked with A. pleuropneumoniae. This is the first-ever report on the development of PSR for specific detection of A. pleuropneumoniae and can be applied for early diagnosis at the field level.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Mycoplasma , Pleuropneumonia , Doenças dos Suínos , Infecções por Actinobacillus/diagnóstico , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/genética , Animais , Mycoplasma/genética , Pleuropneumonia/diagnóstico , Pleuropneumonia/microbiologia , Pleuropneumonia/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/microbiologia
14.
Front Immunol ; 12: 688294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394082

RESUMO

Polarization of macrophages to different functional states is important for mounting responses against pathogen infections. Macrophages are the major target cells of porcine circovirus type 2 (PCV2), which is the primary causative agent of porcine circovirus-associated disease (PCVAD) leading to immense economic losses in the global swine industry. Clinically, PCV2 is often found to increase risk of other pathogenic infections yet the underlying mechanisms remain to be elusive. Here we found that PCV2 infection skewed macrophages toward a M1 status through reprogramming expression of a subset of M1-associated genes and M2-associated genes. Mechanistically, induction of M1-associated genes by PCV2 infection is dependent on activation of nuclear factor kappa B (NF-κB) and c-jun N-terminal kinase (JNK) signaling pathways whereas suppression of M2-associated genes by PCV2 is via inhibiting expression of jumonji domain containing-3 (JMJD3), a histone 3 Lys27 (H3K27) demethylase that regulates M2 activation of macrophages. Finally, we identified that PCV2 capsid protein (Cap) directly inhibits JMJD3 transcription to restrain expression of interferon regulatory factor (IRF4) that controls M2 macrophage polarization. Consequently, sustained infection of PCV2 facilitates bacterial infection in vitro. In summary, these findings showed that PCV2 infection functionally modulated M1 macrophage polarization via targeting canonical signals and epigenetic histone modification, which contributes to bacterial coinfection and virial pathogenesis.


Assuntos
Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/patogenicidade , Infecções por Circoviridae/virologia , Circovirus/patogenicidade , Coinfecção , Macrófagos/microbiologia , Macrófagos/virologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/metabolismo , Actinobacillus pleuropneumoniae/imunologia , Animais , Células Cultivadas , Montagem e Desmontagem da Cromatina , Infecções por Circoviridae/imunologia , Circovirus/imunologia , Modelos Animais de Doenças , Epigênese Genética , Interações Hospedeiro-Patógeno , Fatores Reguladores de Interferon/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Fenótipo , Infecções por Salmonella/imunologia , Infecções por Salmonella/metabolismo , Salmonella typhimurium/imunologia , Transdução de Sinais
15.
Vet Microbiol ; 258: 109122, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34052743

RESUMO

Actinobacillus pleuropneumoniae is a Gram-negative bacterium causing porcine pleuropneumonia and severe economic losses in the global swine industry. The toxic trace element copper is required for many physiological and pathological processes in organisms. However, CopA, one of the most well-characterized P-type ATPases contributing to copper resistance, has not been characterized in A. pleuropneumoniae. We used quantitative PCR analysis to examine expression of the copA gene in A. pleuropneumoniae and investigated sequence conservation among serotypes and other Gram-negative bacteria. Growth characteristics were determined using growth curve analyses and spot dilution assays of the wild-type strain and a △copA mutant. We also used flame atomic absorption spectrophotometry to determine intracellular copper content and examined the virulence of the △copA mutant in a mouse model. The copA expression was induced by copper, and its nucleotide sequence was highly conserved among different serotypes of A. pleuropneumoniae. The amino acid sequence of CopA shared high identity with CopA sequences reported from several Gram-negative bacteria. Furthermore, the △copA mutant exhibited impaired growth and had higher intracellular copper content compared with the wild-type strain when supplemented with copper. The mouse model revealed that CopA had no influence on the virulence of A. pleuropneumoniae. In conclusion, these results demonstrated that CopA is required for resistance of A. pleuropneumoniae to copper and protects A. pleuropneumoniae against copper toxicity via copper efflux.


Assuntos
Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Cobre/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/metabolismo , Actinobacillus pleuropneumoniae/patogenicidade , Animais , Proteínas de Bactérias/genética , Biologia Computacional , Camundongos , Camundongos Endogâmicos BALB C , Regulação para Cima/efeitos dos fármacos , Virulência
16.
Infect Immun ; 89(6)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33685942

RESUMO

Porcine pleuropneumonia is a common infectious disease of pigs caused by Actinobacillus pleuropneumoniae Interferon gamma (IFN-γ) expression increases in the lung of pigs after A. pleuropneumoniae infection, but the role of IFN-γ during the infection is still obscure. In this study, an IFN-γ-/- mouse infection model was established, and bacterial load, levels of inflammatory cytokines, and types of neutrophils in the lungs were studied at different times post-A. pleuropneumoniae infection. We found that wild-type (WT) mice were more susceptible to A. pleuropneumoniae than IFN-γ-/- mice. At 6 h postinfection (hpi), the expression of interleukin 18 (IL-18) and IL-1ß in the lungs of IFN-γ-/- mice was significantly increased compared to WT mice. The bacterial load and levels of inflammatory cytokines (IL-1ß and IL-6) of IFN-γ-/- mice were significantly reduced at 12 hpi compared to WT mice. After an initial loss, the numbers of lung polymorphonuclear (PMN)-I cells dramatically increased in the lungs of IFN-γ-/- but not WT mice, whereas PMN-II cells continually decreased. Finally, in vivo administration of IL-18 significantly reduced clinical scores and bacterial load in the lungs of A. pleuropneumoniae-infected mice. This study identifies IFN-γ as a target for regulating the inflammatory response in the lung and provides a basis for understanding the course of clinical bacterial pneumonia and for the formulation of treatment protocols.


Assuntos
Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/metabolismo , Actinobacillus pleuropneumoniae/imunologia , Interações Hospedeiro-Patógeno , Interleucina-18/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/patologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/patologia
17.
Sci Rep ; 11(1): 1753, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462305

RESUMO

ApxI exotoxin is an important virulence factor derived from Actinobacillus pleuropneumoniae that causes pleuropneumonia in swine. Here, we investigate the role of lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18), a member of the ß2 integrin family, and the involvement of the integrin signaling molecules focal adhesion kinase (FAK) and Akt in ApxI cytotoxicity. Using Western blot analysis, we found that ApxI downregulated the activity of FAK and Akt in porcine alveolar macrophages (AMs). Preincubation of porcine AMs with an antibody specific for porcine CD18 reduced ApxI-induced cytotoxicity as measured by a lactate dehydrogenase release assay and decreased ApxI-induced FAK and Akt attenuation, as shown by Western blot analysis. Pretreatment with the chemical compounds PMA and SC79, which activate FAK and Akt, respectively, failed to overcome the ApxI-induced attenuation of FAK and Akt and death of porcine AMs. Notably, the transfection experiments revealed that ectopic expression of porcine LFA-1 (pLFA-1) conferred susceptibility to ApxI in ApxI-insensitive cell lines, including human embryonic kidney 293T cells and FAK-deficient mouse embryonic fibroblasts (MEFs). Furthermore, ectopic expression of FAK significantly reduced ApxI cytotoxicity in pLFA-1-cotransfected FAK-deficient MEFs. These findings show for the first time that pLFA-1 renders cells susceptible to ApxI and ApxI-mediated attenuation of FAK activity via CD18, thereby contributing to subsequent cell death.


Assuntos
Infecções por Actinobacillus/patologia , Actinobacillus pleuropneumoniae/metabolismo , Proteínas de Bactérias/metabolismo , Quinase 1 de Adesão Focal/antagonistas & inibidores , Proteínas Hemolisinas/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Doenças dos Suínos/patologia , Infecções por Actinobacillus/metabolismo , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/isolamento & purificação , Actinobacillus pleuropneumoniae/patogenicidade , Animais , Morte Celular/fisiologia , Células Cultivadas , Quinase 1 de Adesão Focal/metabolismo , Humanos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Suínos , Doenças dos Suínos/metabolismo , Doenças dos Suínos/microbiologia
18.
Vet Res ; 52(1): 10, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472678

RESUMO

Serotyping is the most common method to characterize field isolates of Actinobacillus (A.) pleuropneumoniae, the etiological agent of porcine pleuropneumonia. Based on serology, many farms seem to be infected and antibodies against a wide variety of serovars are detectable, but, so far it is unknown to what degree respective serovars contribute to outbreaks of clinical manifest disease. In this study, 213 German A. pleuropneumoniae field isolates retrieved for diagnostic purposes from outbreaks of porcine pleuropneumonia between 2010 and 2019 were genetically serotyped and analyzed regarding their apx-toxin gene profile using molecular methods. Serotyping revealed a prominent role of serovar 2 in clinical cases (64% of all isolates) and an increase in the detection of this serovar since 2010 in German isolates. Serovar 9/11 followed as the second most frequent serovar with about 15% of the isolates. Furthermore, very recently described serovars 16 (n = 2) and 18 (n = 8) were detected. Most isolates (93.4%) showed apx-profiles typical for the respective serovar. However, this does not hold true for isolates of serovar 18, as 75% (n = 6) of all isolates of this serovar deviated uniformly from the "typical" apx-gene profile of the reference strain 7311555. Notably, isolates from systemic lesions such as joints or meninges did not harbor the complete apxICABD operon which is considered typical for highly virulent strains. Furthermore, the extremely low occurrence (n = 1) of NAD independent (biovar II) isolates in German A. pleuropneumoniae was evident in our collection of clinical isolates.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/genética , Pleuropneumonia/veterinária , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/isolamento & purificação , Animais , Genótipo , Técnicas de Genotipagem/veterinária , Alemanha , Pleuropneumonia/microbiologia , Sorogrupo , Sorotipagem/veterinária , Sus scrofa , Suínos
19.
Vet Microbiol ; 254: 108983, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33486327

RESUMO

The aim of this study was to characterize a mcr-1-carrying integrative and conjugative element (ICE) in a novel Pasteurellaceae-like bacteria of swine origin. The mcr-1-positive GY-402 strain, recovered from a pig fecal sample, was subjected to whole genome sequencing with the combination of Illumina Hiseq and MinION platforms. Genome-based taxonomy revealed that strain GY-402 exhibited highest ANI value (84.89 %) to Actinobacillus succinogenes, which suggested that it represented a novel Actinobacillus species. Sequence analysis revealed that mcr-1 was clustered with eight other resistance genes in the MDR region of a novel ICE element, named ICEAsp1. Inverse PCR and mating assays showed that ICEAsp1 is active and transferrable. In addition, six circular forms mediated by four ISApl1 elements were detected with different inverse PCR sets, indicating that flexible composite transposons could be formed by pairwise combinations of multiple IS copies. Cloning experiment and phylogenetic analysis revealed that the novel Cat protein, designated CatT, belongs to type-A family and confers resistance to chloramphenicol. In conclusion, this is, to the best of our knowledge, the first report of mcr-1 gene on ICE structure and also in Pasteurellaceae bacteria. The diverse composite transposons mediated by multicopy IS elements may facilitate the dissemination of different resistance genes.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus/efeitos dos fármacos , Actinobacillus/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Resistência ao Cloranfenicol/genética , Cloranfenicol/farmacologia , Actinobacillus/isolamento & purificação , Infecções por Actinobacillus/microbiologia , Animais , Proteínas de Bactérias/classificação , Proteínas de Bactérias/isolamento & purificação , Conjugação Genética , DNA Bacteriano/genética , Testes de Sensibilidade Microbiana , Filogenia , Suínos/microbiologia
20.
Vet Med Sci ; 7(2): 455-464, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33058489

RESUMO

The pharmacokinetics of gamithromycin were evaluated in 26 male castrated and female crossbred swine administered gamithromycin 15% w/v (Zactran®, Boehringer Ingelheim) intravenously at 6 mg/kg bodyweight or intramuscularly at 3, 6 or 12 mg/kg bodyweight. Blood samples were collected up to Day 10 to establish the plasma profile of gamithromycin, bioavailability and dose proportionality. When administered by intramuscular injection at 6 mg/kg BWT, pharmacokinetic parameters were as follows: area under the curve until last quantifiable plasma concentration, 5.13 ± 0.957 µg*hours/ml; maximum plasma concentration, 960 ± 153 ng/ml at 5 to 15 min; terminal half-life of 94.1 ± 20.4 hr. Absolute bioavailability was 92.2%. Increase in systemic exposure was proportional to the gamithromycin dose level over the range 3-12 mg/kg BWT. No gender-related statistically significant difference in exposure was observed. For clinical evaluation of Zactran® against swine respiratory disease, 305 pigs from six commercial farms in three countries in Europe with signs associated with Actinobacillus pleuropneumoniae and/or Haemophilus parasuis and/or Pasteurella multocida and/or Bordetella bronchiseptica were used. At each site, animals were treated once in a 1:1 ratio with a single intramuscular dose of Zactran® (6 mg gamithromycin/kg bodyweight) or Zuprevo® (4% w/v tildipirosin at 4 mg/kg bodyweight; MSD Animal Health) at the recommended dose respectively. Animals were observed and scored daily for 10 consecutive days for signs of swine respiratory disease (depression, respiration and rectal temperature), and animals presenting signs of clinical swine respiratory disease (Depression Score 3 and/or Respiratory Score 3 associated with Rectal Temperature > 40.0°C) were removed from the study and considered as treatment failure. Animals which remained in the study were individually assessed for 'treatment success' or 'treatment failure' (Depression Score ≥ 1 and Rectal Temperature > 40.0°C or Respiratory Score ≥ 1 and Rectal Temperature > 40.0°C). Using a non-inferiority hypothesis test (non-inferiority margin = 0.10), the proportion of treatment successes in the Zactran® group (97%) was equivalent to or better than that in the Zuprevo® group (93%).


Assuntos
Antibacterianos/farmacocinética , Macrolídeos/farmacocinética , Infecções Respiratórias/veterinária , Doenças dos Suínos/tratamento farmacológico , Infecções por Actinobacillus/tratamento farmacológico , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Animais , Infecções por Bordetella/tratamento farmacológico , Infecções por Bordetella/microbiologia , Infecções por Bordetella/veterinária , Bordetella bronchiseptica/efeitos dos fármacos , Feminino , Infecções por Haemophilus/tratamento farmacológico , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/veterinária , Haemophilus parasuis/efeitos dos fármacos , Masculino , Infecções por Pasteurella/tratamento farmacológico , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/veterinária , Pasteurella multocida/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...